Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6900, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903764

RESUMEN

Inter-organelle contact and communication between mitochondria and sarco/endoplasmic reticulum (SR/ER) maintain cellular homeostasis and are profoundly disturbed during tissue ischemia. We tested the hypothesis that the formin Diaphanous-1 (DIAPH1), which regulates actin dynamics, signal transduction and metabolic functions, contributes to these processes. We demonstrate that DIAPH1 interacts directly with Mitofusin-2 (MFN2) to shorten mitochondria-SR/ER distance, thereby enhancing mitochondria-ER contact in cells including cardiomyocytes, endothelial cells and macrophages. Solution structure studies affirm the interaction between the Diaphanous Inhibitory Domain and the cytosolic GTPase domain of MFN2. In male rodent and human cardiomyocytes, DIAPH1-MFN2 interaction regulates mitochondrial turnover, mitophagy, and oxidative stress. Introduction of synthetic linker construct, which shorten the mitochondria-SR/ER distance, mitigated the molecular and functional benefits of DIAPH1 silencing in ischemia. This work establishes fundamental roles for DIAPH1-MFN2 interaction in the regulation of mitochondria-SR/ER contact networks. We propose that targeting pathways that regulate DIAPH1-MFN2 interactions may facilitate recovery from tissue ischemia.


Asunto(s)
Células Endoteliales , Mitocondrias , Humanos , Masculino , Retículo Endoplásmico/metabolismo , Células Endoteliales/metabolismo , Forminas/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Isquemia/genética , Isquemia/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Transducción de Señal , Animales
2.
Commun Biol ; 6(1): 280, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932214

RESUMEN

Atherosclerosis evolves through dysregulated lipid metabolism interwoven with exaggerated inflammation. Previous work implicating the receptor for advanced glycation end products (RAGE) in atherosclerosis prompted us to explore if Diaphanous 1 (DIAPH1), which binds to the RAGE cytoplasmic domain and is important for RAGE signaling, contributes to these processes. We intercrossed atherosclerosis-prone Ldlr-/- mice with mice devoid of Diaph1 and fed them Western diet for 16 weeks. Compared to male Ldlr-/- mice, male Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis, in parallel with lower plasma concentrations of cholesterol and triglycerides. Female Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis compared to Ldlr-/- mice and demonstrated lower plasma concentrations of cholesterol, but not plasma triglycerides. Deletion of Diaph1 attenuated expression of genes regulating hepatic lipid metabolism, Acaca, Acacb, Gpat2, Lpin1, Lpin2 and Fasn, without effect on mRNA expression of upstream transcription factors Srebf1, Srebf2 or Mxlipl in male mice. We traced DIAPH1-dependent mechanisms to nuclear translocation of SREBP1 in a manner independent of carbohydrate- or insulin-regulated cues but, at least in part, through the actin cytoskeleton. This work unveils new regulators of atherosclerosis and lipid metabolism through DIAPH1.


Asunto(s)
Aterosclerosis , Metabolismo de los Lípidos , Animales , Femenino , Masculino , Ratones , Aterosclerosis/genética , Aterosclerosis/metabolismo , Colesterol/metabolismo , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Fosfatidato Fosfatasa/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Triglicéridos/metabolismo , Forminas/genética , Ratones Noqueados
3.
Obesity (Silver Spring) ; 30(8): 1647-1658, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35894077

RESUMEN

OBJECTIVE: Aldose reductase (AKR1B1 in humans; Akr1b3 in mice), a key enzyme of the polyol pathway, mediates lipid accumulation in the murine heart and liver. The study objective was to explore potential roles for AKR1B1/Akr1b3 in the pathogenesis of obesity and its complications. METHODS: The study employed mice treated with an inhibitor of aldose reductase or mice devoid of Akr1b3 were used to determine their response to a high-fat diet. The study used subcutaneous adipose tissue-derived adipocytes to investigate mechanisms by which AKR1B1/Akr1b3 promotes diet-induced obesity. RESULTS: Increased expression of aldose reductase and senescence in the adipose tissue of humans and mice with obesity were demonstrated. Genetic deletion of Akr1b3 or pharmacological blockade of AKRIB3 with zopolrestat reduced high-fat-diet-induced obesity, attenuated markers of adipose tissue senescence, and increased lipolysis. CONCLUSIONS: AKR1B1/Akr1b3 modulation of senescence in subcutaneous adipose tissue contributes to aberrant metabolic responses to high-fat feeding. These data unveil new opportunities to target these pathways to combat obesity.


Asunto(s)
Aldehído Reductasa , Grasa Subcutánea , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Aldo-Ceto Reductasas , Animales , Dieta Alta en Grasa/efectos adversos , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Grasa Subcutánea/metabolismo
4.
Nat Commun ; 13(1): 2047, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440538

RESUMEN

The genus Quercus, which emerged ∼55 million years ago during globally warm temperatures, diversified into ∼450 extant species. We present a high-quality de novo genome assembly of a California endemic oak, Quercus lobata, revealing features consistent with oak evolutionary success. Effective population size remained large throughout history despite declining since early Miocene. Analysis of 39,373 mapped protein-coding genes outlined copious duplications consistent with genetic and phenotypic diversity, both by retention of genes created during the ancient γ whole genome hexaploid duplication event and by tandem duplication within families, including numerous resistance genes and a very large block of duplicated DUF247 genes, which have been found to be associated with self-incompatibility in grasses. An additional surprising finding is that subcontext-specific patterns of DNA methylation associated with transposable elements reveal broadly-distributed heterochromatin in intergenic regions, similar to grasses. Collectively, these features promote genetic and phenotypic variation that would facilitate adaptability to changing environments.


Asunto(s)
Quercus , Evolución Biológica , Metilación de ADN/genética , Epigenoma , Evolución Molecular , Humanos , Quercus/genética
5.
Commun Biol ; 5(1): 177, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35228715

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an incurable disease characterized by proteinaceous aggregate accumulation and neuroinflammation culminating in rapidly progressive lower and upper motor neuron death. To interrogate cell-intrinsic and inter-cell type perturbations in ALS, single-nucleus RNA sequencing was performed on the lumbar spinal cord in the murine ALS model SOD1G93A transgenic and littermate control mice at peri-symptomatic onset stage of disease, age 90 days. This work uncovered perturbed tripartite synapse functions, complement activation and metabolic stress in the affected spinal cord; processes evidenced by cell death and proteolytic stress-associated gene sets. Concomitantly, these pro-damage events in the spinal cord co-existed with dysregulated reparative mechanisms. This work provides a resource of cell-specific niches in the ALS spinal cord and asserts that interwoven dysfunctional neuronal-glial communications mediating neurodegeneration are underway prior to overt disease manifestation and are recapitulated, in part, in the human post-mortem ALS spinal cord.


Asunto(s)
Esclerosis Amiotrófica Lateral , Comunicación Celular , Neuronas Motoras , Neuroglía , Médula Espinal , Superóxido Dismutasa-1 , Animales , Comunicación Celular/fisiología , Modelos Animales de Enfermedad , Ratones , Neuroglía/citología , Neuroglía/metabolismo , Médula Espinal/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
6.
Immunometabolism ; 3(3)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178389

RESUMEN

Fundamental modulation of energy metabolism in immune cells is increasingly being recognized for the ability to impart important changes in cellular properties. In homeostasis, cells of the innate immune system, such as monocytes, macrophages and dendritic cells (DCs), are enabled to respond rapidly to various forms of acute cellular and environmental stress, such as pathogens. In chronic stress milieus, these cells may undergo a re-programming, thereby triggering processes that may instigate tissue damage and failure of resolution. In settings of metabolic dysfunction, moieties such as excess sugars (glucose, fructose and sucrose) accumulate in the tissues and may form advanced glycation end products (AGEs), which are signaling ligands for the receptor for advanced glycation end products (RAGE). In addition, cellular accumulation of cholesterol species such as that occurring upon macrophage engulfment of dead/dying cells, presents these cells with a major challenge to metabolize/efflux excess cholesterol. RAGE contributes to reduced expression and activities of molecules mediating cholesterol efflux. This Review chronicles examples of the roles that sugars and cholesterol, via RAGE, play in immune cells in instigation of maladaptive cellular signaling and the mediation of chronic cellular stress. At this time, emerging roles for the ligand-RAGE axis in metabolism-mediated modulation of inflammatory signaling in immune cells are being unearthed and add to the growing body of factors underlying pathological immunometabolism.

7.
J Neuroinflammation ; 18(1): 139, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34130712

RESUMEN

BACKGROUND: Burgeoning evidence highlights seminal roles for microglia in the pathogenesis of neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). The receptor for advanced glycation end products (RAGE) binds ligands relevant to ALS that accumulate in the diseased spinal cord and RAGE has been previously implicated in the progression of ALS pathology. METHODS: We generated a novel mouse model to temporally delete Ager from microglia in the murine SOD1G93A model of ALS. Microglia Ager deficient SOD1G93A mice and controls were examined for changes in survival, motor function, gliosis, motor neuron numbers, and transcriptomic analyses of lumbar spinal cord. Furthermore, we examined bulk-RNA-sequencing transcriptomic analyses of human ALS cervical spinal cord. RESULTS: Transcriptomic analysis of human cervical spinal cord reveals a range of AGER expression in ALS patients, which was negatively correlated with age at disease onset and death or tracheostomy. The degree of AGER expression related to differential expression of pathways involved in extracellular matrix, lipid metabolism, and intercellular communication. Microglia display increased RAGE immunoreactivity in the spinal cords of high AGER expressing patients and in the SOD1G93A murine model of ALS vs. respective controls. We demonstrate that microglia Ager deletion at the age of symptomatic onset, day 90, in SOD1G93A mice extends survival in male but not female mice. Critically, many of the pathways identified in human ALS patients that accompanied increased AGER expression were significantly ameliorated by microglia Ager deletion in male SOD1G93A mice. CONCLUSIONS: Our results indicate that microglia RAGE disrupts communications with cell types including astrocytes and neurons, intercellular communication pathways that divert microglia from a homeostatic to an inflammatory and tissue-injurious program. In totality, microglia RAGE contributes to the progression of SOD1G93A murine pathology in male mice and may be relevant in human disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Microglía/metabolismo , Microglía/patología , Neuronas Motoras/patología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Caracteres Sexuales , Superóxido Dismutasa-1/genética , Animales , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Gliosis/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptor para Productos Finales de Glicación Avanzada/genética , Análisis de Secuencia de ARN , Médula Espinal/patología , Superóxido Dismutasa-1/metabolismo
8.
Mol Ecol ; 30(2): 406-423, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33179370

RESUMEN

Understanding how the environment shapes genetic variation provides critical insight about the evolution of local adaptation in natural populations. At multiple spatial scales and multiple geographic contexts within a single species, such information could address a number of fundamental questions about the scale of local adaptation and whether or not the same loci are involved at different spatial scales or geographic contexts. We used landscape genomic approaches from three local elevational transects and rangewide sampling to (a) identify genetic variation underlying local adaptation to environmental gradients in the California endemic oak, Quercus lobata; (b) examine whether putatively adaptive SNPs show signatures of selection at multiple spatial scales; and (c) map putatively adaptive variation to assess the scale and pattern of local adaptation. Of over 10 k single-nucleotide polymorphisms (SNPs) generated with genotyping-by-sequencing, we found signatures of natural selection by climate or local environment at over 600 SNPs (536 loci), some at multiple spatial scales across multiple analyses. Candidate SNPs identified with gene-environment tests (LFMM) at the rangewide scale also showed elevated associations with climate variables compared to the background at both rangewide and elevational transect scales with gradient forest analysis. Some loci overlap with those detected in other oak species, raising the question of whether the same loci might be involved in local climate adaptation in different congeneric species that inhabit different geographic contexts. Mapping landscape patterns of adaptive versus background genetic variation identified regions of marked local adaptation and suggests nonlinear association of candidate SNPs and environmental variables. Taken together, our results offer robust evidence for novel candidate genes for local climate adaptation at multiple spatial scales.


Asunto(s)
Quercus , Adaptación Fisiológica/genética , Clima , Genética de Población , Genómica , Polimorfismo de Nucleótido Simple/genética , Quercus/genética , Selección Genética
9.
Circ Res ; 126(11): 1565-1589, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32437306

RESUMEN

The escalating problem of obesity and its multiple metabolic and cardiovascular complications threatens the health and longevity of humans throughout the world. The cause of obesity and one of its chief complications, insulin resistance, involves the participation of multiple distinct organs and cell types. From the brain to the periphery, cell-intrinsic and intercellular networks converge to stimulate and propagate increases in body mass and adiposity, as well as disturbances of insulin sensitivity. This review focuses on the roles of the cadre of innate immune cells, both those that are resident in metabolic organs and those that are recruited into these organs in response to cues elicited by stressors such as overnutrition and reduced physical activity. Beyond the typical cast of innate immune characters invoked in the mechanisms of metabolic perturbation in these settings, such as neutrophils and monocytes/macrophages, these actors are joined by bone marrow-derived cells, such as eosinophils and mast cells and the intriguing innate lymphoid cells, which are present in the circulation and in metabolic organ depots. Upon high-fat feeding or reduced physical activity, phenotypic modulation of the cast of plastic innate immune cells ensues, leading to the production of mediators that affect inflammation, lipid handling, and metabolic signaling. Furthermore, their consequent interactions with adaptive immune cells, including myriad T-cell and B-cell subsets, compound these complexities. Notably, many of these innate immune cell-elicited signals in overnutrition may be modulated by weight loss, such as that induced by bariatric surgery. Recently, exciting insights into the biology and pathobiology of these cell type-specific niches are being uncovered by state-of-the-art techniques such as single-cell RNA-sequencing. This review considers the evolution of this field of research on innate immunity in obesity and metabolic perturbation, as well as future directions.


Asunto(s)
Inmunidad Innata , Síndrome Metabólico/inmunología , Obesidad/inmunología , Animales , Humanos , Síndrome Metabólico/patología , Obesidad/patología
10.
Mol Biol Evol ; 37(8): 2394-2413, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32343808

RESUMEN

For most sequenced flowering plants, multiple whole-genome duplications (WGDs) are found. Duplicated genes following WGD often have different fates that can quickly disappear again, be retained for long(er) periods, or subsequently undergo small-scale duplications. However, how different expression, epigenetic regulation, and functional constraints are associated with these different gene fates following a WGD still requires further investigation due to successive WGDs in angiosperms complicating the gene trajectories. In this study, we investigate lotus (Nelumbo nucifera), an angiosperm with a single WGD during the K-pg boundary. Based on improved intraspecific-synteny identification by a chromosome-level assembly, transcriptome, and bisulfite sequencing, we explore not only the fundamental distinctions in genomic features, expression, and methylation patterns of genes with different fates after a WGD but also the factors that shape post-WGD expression divergence and expression bias between duplicates. We found that after a WGD genes that returned to single copies show the highest levels and breadth of expression, gene body methylation, and intron numbers, whereas the long-retained duplicates exhibit the highest degrees of protein-protein interactions and protein lengths and the lowest methylation in gene flanking regions. For those long-retained duplicate pairs, the degree of expression divergence correlates with their sequence divergence, degree in protein-protein interactions, and expression level, whereas their biases in expression level reflecting subgenome dominance are associated with the bias of subgenome fractionation. Overall, our study on the paleopolyploid nature of lotus highlights the impact of different functional constraints on gene fate and duplicate divergence following a single WGD in plant.


Asunto(s)
Metilación de ADN , Duplicación de Gen , Genoma de Planta , Nelumbo/genética , Poliploidía , Cromosomas de las Plantas
11.
Front Cardiovasc Med ; 7: 37, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32211423

RESUMEN

Obesity and diabetes are leading causes of cardiovascular morbidity and mortality. Although extensive strides have been made in the treatments for non-diabetic atherosclerosis and its complications, for patients with diabetes, these therapies provide less benefit for protection from cardiovascular disease (CVD). These considerations spur the concept that diabetes-specific, disease-modifying therapies are essential to identify, especially as the epidemics of obesity and diabetes continue to expand. Hence, as hyperglycemia is a defining feature of diabetes, it is logical to probe the impact of the specific consequences of hyperglycemia on the vessel wall, immune cell perturbation, and endothelial dysfunction-all harbingers to the development of CVD. In this context, high levels of blood glucose stimulate the formation of the irreversible advanced glycation end products, the products of non-enzymatic glycation and oxidation of proteins and lipids. AGEs accumulate in diabetic circulation and tissues and the interaction of AGEs with their chief cellular receptor, receptor for AGE or RAGE, contributes to vascular and immune cell perturbation. The cytoplasmic domain of RAGE lacks endogenous kinase activity; the discovery that this intracellular domain of RAGE binds to the formin, DIAPH1, and that DIAPH1 is essential for RAGE ligand-mediated signal transduction, identifies the specific cellular means by which RAGE functions and highlights a new target for therapeutic interruption of RAGE signaling. In human subjects, prominent signals for RAGE activity include the presence and levels of two forms of soluble RAGE, sRAGE, and endogenous secretory (es) RAGE. Further, genetic studies have revealed single nucleotide polymorphisms (SNPs) of the AGER gene (AGER is the gene encoding RAGE) and DIAPH1, which display associations with CVD. This Review presents current knowledge regarding the roles for RAGE and DIAPH1 in the causes and consequences of diabetes, from obesity to CVD. Studies both from human subjects and animal models are presented to highlight the breadth of evidence linking RAGE and DIAPH1 to the cardiovascular consequences of these metabolic disorders.

12.
Proc Natl Acad Sci U S A ; 116(50): 25179-25185, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31767740

RESUMEN

Climate change over the next century is predicted to cause widespread maladaptation in natural systems. This prediction, as well as many sustainable management and conservation practices, assumes that species are adapted to their current climate. However, this assumption is rarely tested. Using a large-scale common garden experiment combined with genome-wide sequencing, we found that valley oak (Quercus lobata), a foundational tree species in California ecosystems, showed a signature of adaptational lag to temperature, with fastest growth rates occurring at cooler temperatures than populations are currently experiencing. Future warming under realistic emissions scenarios was predicted to lead to further maladaptation to temperature and reduction in growth rates for valley oak. We then identified genotypes predicted to grow relatively fast under warmer temperatures and demonstrated that selecting seed sources based on their genotype has the potential to mitigate predicted negative consequences of future climate warming on growth rates in valley oak. These results illustrate that the belief of local adaptation underlying many management and conservation practices, such as using local seed sources for restoration, may not hold for some species. If contemporary adaptational lag is commonplace, we will need new approaches to help alleviate predicted negative consequences of climate warming on natural systems. We present one such approach, "genome-informed assisted gene flow," which optimally matches individuals to future climates based on genotype-phenotype-environment associations.


Asunto(s)
Adaptación Fisiológica , Flujo Génico , Genoma de Planta , Quercus/genética , California , Cambio Climático , Ecosistema , Genotipo , Quercus/fisiología , Temperatura
13.
Evol Appl ; 11(10): 1842-1858, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30459833

RESUMEN

Local adaptation is a critical evolutionary process that allows plants to grow better in their local compared to non-native habitat and results in species-wide geographic patterns of adaptive genetic variation. For forest tree species with a long generation time, this spatial genetic heterogeneity can shape the ability of trees to respond to rapid climate change. Here, we identify genomic variation that may confer local environmental adaptations and then predict the extent of adaptive mismatch under future climate as a tool for forest restoration or management of the widely distributed high-elevation oak species Quercus rugosa in Mexico. Using genotyping by sequencing, we identified 5,354 single nucleotide polymorphisms (SNPs) genotyped from 103 individuals across 17 sites in the Trans-Mexican Volcanic Belt, and, after controlling for neutral genetic structure, we detected 74 F ST outlier SNPs and 97 SNPs associated with climate variation. Then, we deployed a nonlinear multivariate model, Gradient Forests, to map turnover in allele frequencies along environmental gradients and predict areas most sensitive to climate change. We found that spatial patterns of genetic variation were most strongly associated with precipitation seasonality and geographic distance. We identified regions of contemporary genetic and climatic similarities and predicted regions where future populations of Q. rugosa might be at risk due to high expected rate of climate change. Our findings provide preliminary details for future management strategies of Q. rugosa in Mexico and also illustrate how a landscape genomic approach can provide a useful tool for conservation and resource management strategies.

14.
BMC Genet ; 19(1): 88, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30285631

RESUMEN

BACKGROUND: Hybridization and introgression are common phenomena among oak species. These processes can be beneficial by introducing favorable genetic variants across species (adaptive introgression). Given that drought is an important stress, impacting physiological and morphological variation and limiting distributions, our goal was to identify drought-related genes that might exhibit patterns of introgression influenced by natural selection. Using RNAseq, we sequenced whole transcriptomes of 24 individuals from three oaks in southern California: (Quercus engelmannii, Quercus berberidifolia, Quercus cornelius-mulleri) and identified genetic variants to estimate admixture rates of all variants and those in drought genes. RESULTS: We found 398,042 variants across all loci and 4352 variants in 139 drought candidate genes. STRUCTURE analysis of all variants revealed the majority of our samples were assignable to a single species, but with several highly admixed individuals. When using drought-associated variants, the same individuals exhibited less admixture and their allele frequencies were more polarized between Engelmann and scrub oaks than when using the total gene set. These findings are consistent with the hypothesis that selection may act differently on functional genes, such as drought-associated genes, and point to candidate genes that are suggestive of divergent selection among species maintaining adaptive differences. For example, the drought genes that showed the strongest bias against engelmannii-fixed oak variants in scrub oaks were related to sugar transporter, coumarate-coA ligases, glutathione S-conjugation, and stress response. CONCLUSION: This pilot study illustrates that whole transcriptomes of individuals will provide useful data for identifying functional genes that contribute to adaptive divergence among hybridizing species.


Asunto(s)
Sequías , Transferencia de Gen Horizontal , Genes de Plantas , Polimorfismo Genético , Quercus/genética , Estrés Fisiológico , Evolución Molecular , Perfilación de la Expresión Génica , Quercus/fisiología , Análisis de Secuencia de ARN , Especificidad de la Especie
15.
Mol Ecol ; 27(22): 4556-4571, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30226013

RESUMEN

A long-term debate in evolutionary biology is the extent to which reproductive isolation is a necessary element of speciation. Hybridizing plants in general are cited as evidence against this notion, and oaks specifically have been used as the classic example of species maintenance without reproductive isolation. Here, we use thousands of SNPs generated by RAD sequencing to describe the phylogeny of a set of sympatric white oak species in California and then test whether these species exhibit pervasive interspecific gene exchange. Using RAD sequencing, we first constructed a phylogeny of ten oak species found in California. Our phylogeny revealed that seven scrub oak taxa occur within one clade that diverged from a common ancestor with Q. lobata, that they comprise two subclades, and they are not monophyletic but include the widespread tree oak Q. douglasii. Next, we searched for genomic patterns of allele sharing consistent with gene flow between long-divergent tree oaks with scrub oaks. Specifically, we utilized the D-statistic as well as model-based inference to compare the signature of shared alleles between two focal tree species (Q. lobata and Q. engelmannii) with multiple scrub species within the two subclades. We found that introgression is not equally pervasive between sympatric tree and scrub oak species. Instead, gene flow commonly occurs from scrub oaks to recently sympatric Q. engelmannii, but less so from scrub oaks to long-sympatric Q. lobata. This case study illustrates the influence of ancient introgression and impact of reproductive isolating mechanisms in preventing indiscriminate interspecific gene exchange.


Asunto(s)
Flujo Génico , Genética de Población , Hibridación Genética , Quercus/genética , Simpatría , Alelos , California , Evolución Molecular , Modelos Genéticos , Filogenia , Árboles/genética
17.
PeerJ ; 6: e4448, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29507839

RESUMEN

Many plant species exhibit different leaf morphologies within a single plant, or heterophylly. The molecular mechanisms regulating this phenomenon, however, have remained elusive. In this study, the transcriptomes of submerged and floating leaves of an aquatic heterophyllous plant, Potamogeton octandrus Poir, at different stages of development, were sequenced using high-throughput sequencing (RNA-Seq), in order to aid gene discovery and functional studies of genes involved in heterophylly. A total of 81,103 unigenes were identified in submerged and floating leaves and 6,822 differentially expressed genes (DEGs) were identified by comparing samples at differing time points of development. KEGG pathway enrichment analysis categorized these unigenes into 128 pathways. A total of 24,025 differentially expressed genes were involved in carbon metabolic pathways, biosynthesis of amino acids, ribosomal processes, and plant-pathogen interactions. In particular, KEGG pathway enrichment analysis categorized a total of 70 DEGs into plant hormone signal transduction pathways. The high-throughput transcriptomic results presented here highlight the potential for understanding the molecular mechanisms underlying heterophylly, which is still poorly understood. Further, these data provide a framework to better understand heterophyllous leaf development in P. octandrus via targeted studies utilizing gene cloning and functional analyses.

18.
Evol Appl ; 11(2): 231-242, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29387158

RESUMEN

Identifying and quantifying the importance of environmental variables in structuring population genetic variation can help inform management decisions for conservation, restoration, or reforestation purposes, in both current and future environmental conditions. Landscape genomics offers a powerful approach for understanding the environmental factors that currently associate with genetic variation, and given those associations, where populations may be most vulnerable under future environmental change. Here, we applied genotyping by sequencing to generate over 11,000 single nucleotide polymorphisms from 311 trees and then used nonlinear, multivariate environmental association methods to examine spatial genetic structure and its association with environmental variation in an ecologically and economically important tree species endemic to Hawaii, Acacia koa. Admixture and principal components analyses showed that trees from different islands are genetically distinct in general, with the exception of some genotypes that match other islands, likely as the result of recent translocations. Gradient forest and generalized dissimilarity models both revealed a strong association between genetic structure and mean annual rainfall. Utilizing a model for projected future climate on the island of Hawaii, we show that predicted changes in rainfall patterns may result in genetic offset, such that trees no longer may be genetically matched to their environment. These findings indicate that knowledge of current and future rainfall gradients can provide valuable information for the conservation of existing populations and also help refine seed transfer guidelines for reforestation or replanting of koa throughout the state.

19.
New Phytol ; 218(2): 804-818, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29274282

RESUMEN

Here we study hybridization, introgression and lineage diversification in the widely distributed canyon live oak (Quercus chrysolepis) and the relict island oak (Q. tomentella), two Californian golden cup oaks with an intriguing biogeographical history. We employed restriction-site-associated DNA sequencing and integrated phylogenomic and population genomic analyses to study hybridization and reconstruct the evolutionary past of these taxa. Our analyses revealed the presence of two cryptic lineages within Q. chrysolepis. One of these lineages shares its most recent common ancestor with Q. tomentella, supporting the paraphyly of Q. chrysolepis. The split of these lineages was estimated to take place during the late Pliocene or the early Pleistocene, a time corresponding well with the common presence of Q. tomentella in the fossil records of continental California. Analyses also revealed historical hybridization among lineages, high introgression from Q. tomentella into Q. chrysolepis in their current area of sympatry, and widespread admixture between the two lineages of Q. chrysolepis in contact zones. Our results support that the two lineages of Q. chrysolepis behave as a single functional species phenotypically and ecologically well differentiated from Q. tomentella, a situation that can be only accommodated considering hybridization and speciation as a continuum with diffuse limits.


Asunto(s)
Variación Genética , Genómica , Filogenia , Quercus/clasificación , Quercus/genética , Simulación por Computador , Geografía , Hibridación Genética , Modelos Biológicos , Densidad de Población , Análisis de Componente Principal
20.
New Phytol ; 213(2): 942-955, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27621132

RESUMEN

Natural hybridization, which can be involved in local adaptation and in speciation processes, has been linked to different sources of anthropogenic disturbance. Here, we use genotypic data to study range-wide patterns of genetic admixture between the serpentine-soil specialist leather oak (Quercus durata) and the widespread Californian scrub oak (Quercus berberidifolia). First, we estimated hybridization rates and the direction of gene flow. Second, we tested the hypothesis that genetic admixture increases with different sources of environmental disturbance, namely anthropogenic destruction of natural habitats and wildfire frequency estimated from long-term records of fire occurrence. Our analyses indicate considerable rates of hybridization (> 25%), asymmetric gene flow from Q. durata into Q. berberidifolia, and a higher occurrence of hybrids in areas where both species live in close parapatry. In accordance with the environmental disturbance hypothesis, we found that genetic admixture increases with wildfire frequency, but we did not find a significant effect of other sources of human-induced habitat alteration (urbanization, land clearing for agriculture) or a suite of ecological factors (climate, elevation, soil type). Our findings highlight that wildfires constitute an important source of environmental disturbance, promoting hybridization between two ecologically well-differentiated native species.


Asunto(s)
Ecosistema , Actividades Humanas , Hibridación Genética , Quercus/genética , Teorema de Bayes , Flujo Génico , Geografía , Humanos , Modelos Lineales , Modelos Genéticos , Análisis de Componente Principal , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...